21 research outputs found

    SNP rs3803264 polymorphisms in THSD1 and abnormally expressed mRNA are associated with hemorrhagic stroke

    Get PDF
    BackgroundThrombospondin Type 1 Domain Containing Protein 1 (THSD1) has been suggested to be a new regulator of endothelial barrier function in the angiogenesis process, preserving vascular integrity. We sought to characterize the association of THSD1 genetic variants and mRNA expression with the risk of hemorrhagic stroke (HS) with population-based evidence.MethodsA case–control study was conducted with 843 HS cases and 1,400 healthy controls. A cohort study enrolled 4,080 participants free of stroke at baseline in 2009 and followed up to 2022. A synonymous variant, the main tag SNP rs3803264 of the THSD1 gene, was genotyped in all subjects, and peripheral leukocyte THSD1 mRNA expression was detected using RT-qPCR in 57 HS cases and 119 controls.ResultsIn the case–control study, rs3803264 AG/GG variations are associated with a decreased risk of HS with odd ratio (OR) and 95% confidence interval (CI) of the dominant model of 0.788 (0.648–0.958), p = 0.017. In addition, rs3803264 and dyslipidemia had a multiplicative interaction [OR (95% CI) = 1.389 (1.032, 1.869), p = 0.030]. In the cohort study, a similar association strength of rs3803264 dominant model and the risk of HS was observed with the incidence rate ratio (IRR) of 0.734 and p-value of 0.383. Furthermore, the risk of HS showed a non-linear as THSD1 mRNA expression increased (p for non-linearity <0.001). For the subjects without hypertension, we observed THSD1 mRNA expression had a negative correlation with systolic blood pressure (SBP; ρ = −0.334, p = 0.022).ConclusionSNP rs3803264 polymorphisms in THSD1 are associated with the decreased risk of HS and interacted with dyslipidemia, and a non-linear association was observed between THSD1 mRNA expression and the risk of HS

    Simulation and assessment of manufacturing ethylene carbonate from ethylene oxide in multiple process routes

    No full text
    Ethylene oxide (EO) is an important raw material for producing ethylene carbonate (EC). However, the traditional method for the separation of EO from mixture gas by water in the refining process is high energy consumption. In this paper, two processes of manufacturing EC from EO mixture gas were studied by process simulation. Two processes for producing EC from EO mixture as raw materials without EO purification, called the OSAC process and the Modified OSAC process, were developed and assessed systematically. Both processes use EC as the absorbent to capture EO, avoiding the separation process of EO from solution. For comparisons, the EC producing process containing EO absorption by water, EO refinement and carbonylation process were also modeled, which was called the ERC process. Three schemes were designed for the EO absorber using EC as absorbent. Compared with the initial absorber scheme, the optimal liquid-vapor ratio is reduced from 1.66 to 1.45 (mass). Moreover, the mass distribution analysis for the three processes were carried out in the form of the material chain. It was found that, compared with the ERC process, the energy consumption of the OSAC and the Modified OSAC process is reduced by 56.89% and 30.03%, respectively. This work will provide helpful information for the industrialization of the OSAC process. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved

    Technical-environmental assessment of CO2 conversion process to dimethyl carbonate/ethylene glycol

    No full text
    Utilization of CO2 to produce value-added chemicals is a promising approach to mitigate greenhouse gas emissions. In this work, a new process for the conversion of CO2 to dimethyl carbonate (DMC) and ethylene glycol (EG) was rigorously simulated and assessed in term of the technical performance and the environmental impact. The proposed model involves the conversion of CO2 catalyzed by ionic liquid-based catalysts, the reactive distillation with the reaction kinetics model, the pressure-swing distillation with rigorous phase equilibrium equations, and complex material-energy nexus between each unit. The results show that the carbon utilization efficiency of this process reaches 99% and the negative CO2 emission is 0.14 ton CO2/ton product achieving CO2 reduction. The green degree value of the entire process is 176.30 gd/h indicating that this new process can be evaluated as an environmental friendly process. Additionally, the retrofitted heat exchanger network designed via the pinch technique achieves 48.70% saving in heating utility consumption and increasing the green degree by 193.89 gd/h. (C) 2020 Elsevier Ltd. All rights reserved

    Chemical composition, N

    No full text

    Bidentate ligand modification strategy on supported Ni nanoparticles for photocatalytic selective hydrogenation of alkynes

    Get PDF
    The design of selective and stable non-precious metal catalysts for hydrogenation of alkyne is highly desirable. In this study, L-lysine modification strategy is applied to support Ni nanoparticles, which greatly improves the stability and photocatalytic performance in the hydrogenation of phenylacetylene to styrene. The robust stability is attributed to that both amino and carboxyl groups of L-lysine can function simultaneously as the anchor, much stronger than a single group, to strongly interact with metallic Ni via N and O coordination. The high selectivity to styrene is due to that L-lysine modification results in a larger adsorption energy difference between styrene and phenylacetylene on the surface of Ni, therefore phenylacetylene is preferentially adsorbed on Ni surface. This protocol shows that the modulation of interaction between ligands and Ni is favorable to design stable, active and selective catalysts for hydrogenation of alkynes

    Chemical composition, <i>N</i>-nitrosamine inhibition and antioxidant and antimicrobial properties of essential oil from <i>Coreopsis tinctoria</i> flowering tops

    No full text
    <p><i>Coreopsis tinctoria</i> flowering (CTF) tops from the Kunlun Mountains in Xinjing (north-western China) have been used for tea production for about a century. This study was to assess antioxidant, nitrite-scavenging and <i>N</i>-nitrosamine inhibitory and antimicrobial activities of the essential oil extracted from CTF tops. The essential oil was extracted through hydrodistillation and its chemical compositions were analysed by GC–MS. Seventy compounds of the oil were identified, representing 81.87% of total oil. The antioxidant capacities of the oil with IC<sub>50</sub> values for scavenging DPPH and ABTS were 287.66 ± 12.60 and 1.251 ± 0.127 μg mL<sup>− 1</sup>, respectively. The nitrite-scavenging and <i>N</i>-nitrosamine inhibitory activities (IC<sub>50</sub>) were 0.3912 ± 0.0127 and 0.6564 ± 0.036 μg mL<sup>− 1</sup>, respectively. The oil has a certain antimicrobial capacity, but its capacity was weaker than that of penicillinG (24 μg mL<sup>− 1</sup>). The oil showed antioxidant and antimicrobial capacities and had a stronger nitrite-scavenging and <i>N</i>-nitrosamine inhibitory properties.</p

    Structure of Double-Shelled Rice Dwarf Virus

    No full text
    Rice dwarf virus (RDV), a member of the Reoviridae family, is a double-stranded RNA virus. Infection of rice plants with RDV reduces crop production significantly and can pose a major economic threat to Southeast Asia. A 25-Å three-dimensional structure of the 700-Å-diameter RDV capsid has been determined by 400-kV electron cryomicroscopy and computer reconstruction. The structure revealed two distinctive icosahedral shells: a T=13l outer icosahedral shell composed of 260 trimeric clusters of P8 (46 kDa) and an inner T=1 icosahedral shell of 60 dimers of P3 (114 kDa). Sequence and structural comparisons were made between the RDV outer shell trimer and the two crystal conformations (REF and HEX) of the VP7 trimer of bluetongue virus, an animal analog of RDV. The low-resolution structural match of the RDV outer shell trimer to the HEX conformation of VP7 trimer has led to the proposal that P8 consists of an upper domain of β-sandwich motif and a lower domain of α helices. The less well fit REF conformation of VP7 to the RDV trimer may be due to the differences between VP7 and P8 in the sequence of the hinge region that connects the two domains. The additional mass density and the absence of a known signaling peptide on the surface of the RDV outer shell trimer may be responsible for the different interactions between plants and animal reoviruses

    Current Knowledge on Epizootic Haemorrhagic Disease in China

    No full text
    Epizootic haemorrhagic disease (EHD) is an infectious, non-contagious viral disease of ruminants caused by epizootic haemorrhagic disease virus (EHDV) and is transmitted by insects of the genus Culicoides. In 2008, EHD was listed on the World Organization for Animal Health (WOAH) list of notifiable terrestrial and aquatic animal diseases. This article reviews the distribution of EHD in China and relevant studies and proposes several suggestions for the prevention and control of EHD. There have been reports of positivity for serum antibodies against EHDV-1, EHDV-2, EHDV-5, EHDV-6, EHDV-7, EHDV-8 and EHDV-10 in China. Strains of EHDV-1, -5, -6, -7, -8 and -10 have been isolated, among which the Seg-2, Seg-3 and Seg-6 sequences of serotypes -5, -6, -7 and -10 belong to the eastern topotype. The emergence of western topotype Seg-2 in EHDV-1 strains indicates that EHDV-1 strains in China are reassortant strains of the western and eastern topotypes. A novel serotype strain of EHDV named YNDH/V079/2018 was isolated in 2018. Chinese scholars have successfully expressed the EHDV VP7 protein and developed a variety of ELISA detection methods, including antigen capture ELISA and competitive ELISA. A variety of EHDV nucleic acid detection methods, including RT–PCR and qRT–PCR, have also been developed. LAMP and the liquid chip detection technique are also available. To prevent and control EHD, several suggestions for controlling EHD transmission have been proposed based on the actual situation in China, including controlling the number of Culicoides, reducing contact between Culicoides and hosts, continued monitoring of EHDV and Culicoides in different areas of China and further development and application of basic and pioneering research related to EHD prevention and control

    Image_1_SNP rs3803264 polymorphisms in THSD1 and abnormally expressed mRNA are associated with hemorrhagic stroke.PDF

    No full text
    BackgroundThrombospondin Type 1 Domain Containing Protein 1 (THSD1) has been suggested to be a new regulator of endothelial barrier function in the angiogenesis process, preserving vascular integrity. We sought to characterize the association of THSD1 genetic variants and mRNA expression with the risk of hemorrhagic stroke (HS) with population-based evidence.MethodsA case–control study was conducted with 843 HS cases and 1,400 healthy controls. A cohort study enrolled 4,080 participants free of stroke at baseline in 2009 and followed up to 2022. A synonymous variant, the main tag SNP rs3803264 of the THSD1 gene, was genotyped in all subjects, and peripheral leukocyte THSD1 mRNA expression was detected using RT-qPCR in 57 HS cases and 119 controls.ResultsIn the case–control study, rs3803264 AG/GG variations are associated with a decreased risk of HS with odd ratio (OR) and 95% confidence interval (CI) of the dominant model of 0.788 (0.648–0.958), p = 0.017. In addition, rs3803264 and dyslipidemia had a multiplicative interaction [OR (95% CI) = 1.389 (1.032, 1.869), p = 0.030]. In the cohort study, a similar association strength of rs3803264 dominant model and the risk of HS was observed with the incidence rate ratio (IRR) of 0.734 and p-value of 0.383. Furthermore, the risk of HS showed a non-linear as THSD1 mRNA expression increased (p for non-linearity ConclusionSNP rs3803264 polymorphisms in THSD1 are associated with the decreased risk of HS and interacted with dyslipidemia, and a non-linear association was observed between THSD1 mRNA expression and the risk of HS.</p
    corecore